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Abstract

In solids one often starts with an ideal crystal that is studied on the atomic scale at zero temperature. The unit cell may contain
several atoms (at certain positions) and is repeated with periodic boundary conditions. Quantum mechanics governs the electronic
structure that is responsible for properties such as relative stability, chemical bonding, relaxation of the atoms, phase transitions,
electrical, mechanical, optical or magnetic behavior, etc. Corresponding first principles calculations are mainly done within density
functional theory (DFT), according to which the many-body problem of interacting electrons and nuclei is mapped to a series of
one-electron equations, the so-called Kohn—Sham (KS) equations. One among the most precise schemes to solve the KS equations is
the linearized-augmented-plane-wave (LAPW) method that is employed for example in the computer code WIEN2k to study crystal
properties on the atomic scale (see www.wien2k.at). Nowadays such calculations can be done—on sufficiently powerful computers—
for systems containing about 100 atoms per unit cell. A selection of representative examples and the references to the original

literature is given.
© 2003 Elsevier Inc. All rights reserved.

Keywords: DFT; LAPW; Energy bands; WIEN2k; Electronic structure

1. Introduction

Solid materials are of great technological interest.
Different materials are governed by very different length
and time scales. They may differ by many orders of
magnitude depending on their applications. Let us focus
on the length scale, where from meters (m) to micro-
meters (um) classical mechanics and continuum models
are the dominating concepts to investigate the properties
of the corresponding materials. However, when one
comes to the nanometer (nm) scale or atomic dimen-
sions measured in A, the properties are determined by
the electronic structure of the solid. In the development
of modern materials an understanding of the atomic
scale is frequently essential in order to replace trial and
error procedures by a systematic materials design.
Modern devices in the electronic industry provide such
an example, where the increased miniaturization is one
of the key advances. Other applications are found in the
area of magnetic recording or optical storage media. A
typical example in chemistry is heterogeneous catalysis,
in which one likes to understand the details of catalytic
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processes between molecules interacting with a solid
surface, e.g., in zeolites.

One way of studying complex systems is to perform
computer simulations. Calculation of solids in general
(metals, insulators, semiconductors, minerals, etc.) can
be performed with a variety of methods from classical to
quantum mechanical (QM) approaches. The former are
mainly force field schemes, in which the forces that
determine the interactions between the atoms are
parameterized in order to reproduce a series of
experimental data such as equilibrium geometries, bulk
moduli or special vibrational frequencies (phonons).
Such schemes have reached a high level of sophistication
and are useful in their range of applicability, namely
within a given class of materials provided good
parameters are already known from closely related
systems. If, however, such parameters are not available,
or if a system shows unusual phenomena that are not yet
understood, one often must rely on ab initio calcula-
tions. They are more demanding in terms of computer
resources and thus allow only the treatment of cell units
smaller than force-field calculations. The advantage of
first-principle (ab initio) methods lies in the fact that
they can be carried out without knowing any experi-
mental data of the system. The following presentation
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will be restricted to ab initio methods whose main
characteristics shall be briefly sketched.

The fact that electrons are indistinguishable and are
fermions requires that their wave functions be anti-
symmetric when two electrons are interchanged. This
situation leads to the phenomenon of exchange. Starting
with molecules there are mainly two types of approaches
for a full quantum mechanical treatment, HF and DFT.
The traditional scheme is (or was) the Hartree—Fock
(HF) method which is based on a wave function
description (with one Slater determinant). Exchange is
treated exactly but correlation effects are ignored by
definition. The latter can be included by more sophis-
ticated approaches (e.g., a linear combination of Slater
determinants) such as the configuration interaction (CI)
scheme that progressively requires more computer time
with a scaling as bad as N7 when the system size (N)
grows. As a consequence it is only feasible to study small
systems, which contain a few atoms.

An alternative scheme is the DFT that is commonly
used to calculate the electronic structure of complex
systems containing many atoms such as large molecules
or solids [1,2]. It is based on the electron density rather
than on the wave functions and treats exchange and
correlation, but both approximately. Since it became the
method of choice for solids it will be described in more
detail below.

The ideal crystal is defined by the unit cell, which may
contain many atoms and is repeated indefinitely
according to translational symmetry. Periodic boundary
conditions are used to describe the infinite crystal by
knowing the properties in one unit cell. The additional
symmetry operations (inversion, rotation, mirror planes,
etc.) that leave the ideal crystal invariant allow both
providing symmetry labels and simplifying the calcula-
tions. Each ideal structure belongs to one of the 230
space groups that are characterized in the International
Tables [3]. Only the electronic ground state is studied.
When thermal vibrations are considered in the form of
phonon calculations [4] an adiabatic (Born Oppenhei-
mer) approximation in which the electronic degrees of
freedom are decoupled from the nuclear motions is used.

2. Density functional theory (DFT)
2.1. The Kohn—Sham equations

The well-established scheme to calculate electronic
properties of solids is based on the DFT, for which
Walter Kohn has received the Nobel Prize in chemistry
in 1998. DFT is a universal approach to the quantum
mechanical many-body problem, where the system of
interacting electrons is mapped in a unique manner onto
an effective non-interacting system that has the same
total density. Hohenberg and Kohn [1] have shown that

the ground state electron density p (in atoms, molecules
or solids) uniquely defines the total energy E, i.e., E[p]
must be a functional of the density. Thus one does not
need to know the many-body wave function. The non-
interacting particles of this auxiliary system move in an
effective local one-particle potential, which consists of a
classical mean-field (Hartree) part and an exchange-
correlation part Vy. (due to quantum mechanics) that, in
principle, incorporates all correlation effects exactly.
According to the variational principle a set of effective
one-particle Schrédinger equations, the so-called Kohn—
Sham (KS) equations [2], must be solved. Its form is

=V Vel®) + Velp(P)] + ViclpP0:(7) = ,,(F)
(1)

when written in Rydberg atomic units for an atom with
the obvious generalization to molecules and solids. The
four terms represent the kinetic energy operator, the
external potential from the nucleus, the Coulomb-, and
exchange-correlation potential, V¢ and V.. The KS
equations must be solved iteratively till self-consistency
is reached. The iteration cycles are needed because of the
interdependence between orbitals and potential. In the
KS scheme the electron density is obtained by summing
over all occupied states, i.c., by filling the KS orbitals
(with increasing energy) according to the aufbau
principle.

occ

p(7) = 6] (2)

From the electron density the V¢ and Vi, potentials for
the next iteration can be calculated, which define the KS
orbitals. This closes the SCF loop. The exact functional
form of the potential V. is not known and thus one
needs to make approximations. Early applications were
done by using results from quantum Monte Carlo
calculations for the homogeneous electron gas, for
which the problem of exchange and correlation can be
solved exactly, leading to the original local density
approximation (LDA). LDA works reasonably well but
has some shortcomings mostly due to the tendency of
overbinding, which cause e.g., too small lattice con-
stants. Modern versions of DFT, especially those using
the generalized gradient approximation (GGA), im-
proved the LDA by adding gradient terms of the
electron density and reached (almost) chemical accu-
racy, as for example the version by Perdew, Burke,
Ernzerhof (PBE) [5].

In the study of large systems the strategy differs for
schemes based on HF or DFT. In HF based methods
the Hamiltonian is well defined but can be solved only
approximately (e.g., due to limited basis sets). In DFT,
however, one must first choose the functional that is
used to represent the exchange and correlation effects
(or approximations to them) but then one can solve this



K. Schwarz | Journal of Solid State Chemistry 176 (2003) 319-328 321

effective Hamiltonian almost exactly, i.e., with very high
precision. Thus in both cases an approximation enters
(either in the first or second step) but the sequence is
reversed. This perspective illustrates the importance in
DFT calculations of improving the functional, since this
defines the quality of the calculation.

2.2. Solving the DFT equation, the choice of basis sets
and wave functions

Many computer programs that can solve the DFT
equations are available but they differ in the basis sets.
Many use an LCAO (linear combination of atomic
orbitals) scheme in one form or another. Some use
Gaussian or Slater type orbitals (GTOs or STOs), others
use plane wave (PW) basis sets with or without
augmentations, and some others make use of muffin
tin orbitals (MTOs) as in linear combination of MTOs
(LMTO) or augmented spherical wave (ASW). In the
former schemes the basis functions are given in analytic
form, but in the latter the radial wave functions are
obtained by numerically integrating the radial Schro-
dinger equation, whereas the angular dependence is
given analytically.

Closely related to the basis set used is the explicit form
of the wave functions, which can be well represented by
them. These can be nodeless pseudo-wave functions or
all-electron wave functions including the complete radial
nodal structure and a proper description close to the
nucleus.

2.3. The form of the potential

In the muffin tin or the atomic sphere approximation
(MTA or ASA) an atomic sphere, in which the potential
(and charge density) is assumed to be spherically
symmetric, surrounds each atom in the crystal. While
these schemes work reasonably well in highly coordi-
nated, closely packed systems (as for example face
centered cubic metals) they become very approximate in
all non-isotropic cases (e.g., layered compounds, semi-
conductors, or open structures). Schemes that make no
shape approximation in the form of the potential are
termed full-potential schemes (see Section 3.2).

With a proper choice of pseudo-potential one can
focus on the valence electrons, which are relevant for
chemical bonding, and replace the inner part of their
wave functions by a nodeless pseudo-function that can
be expanded in PWs with good convergence.

2.4. Relativistic effects

If a solid contains only light elements, non-relativistic
calculations are well justified, but as soon as a system of
interest contains heavier elements, relativistic effects can
no longer be neglected. In the medium range of atomic

numbers (up to about 54) the so-called scalar relativistic
schemes [6] are often used, which describe the main
contraction or expansion of various orbitals (due to the
Darwin s-shift or the mass-velocity term) but omit spin—
orbit splitting. This version is computationally easy and
thus is highly recommended for all systems. The spin—
orbit part can be included in a second-variational
treatment [7]. For very heavy elements it may be
necessary to add p orbitals [41] or to solve Dirac’s
equation, which has all these terms included.

2.5. Method of choice and properties

As a consequence of the aspects described above,
different methods have their advantages or disadvan-
tages when it comes to computing various quantities.
For example, properties, which rely on the knowledge of
the density close to the nucleus (hyperfine fields, electric
field gradients, etc.), require an all-electron description
rather than a pseudo-potential approach with unphysi-
cal wave functions near the nucleus. On the other hand
for an efficient optimization of a structure, in which the
shape (and symmetry) of the unit cell changes, it is very
helpful to know the corresponding stress tensor. These
tensors are much easier to obtain in pseudo-potential
schemes and thus are available there. In augmentation
schemes, however, such algorithms become more
tedious and consequently are often not implemented.
On the other hand all-electron methods do not depend
on choices of pseudo-potentials and contain the full
wave function information. Thus, the choice of method
for a particular application depends on the properties of
interest and may affect the accuracy, ease or difficulty to
calculate them.

3. The full-potential linearized augmented plane wave
(LAPW) method

One among the most precise schemes for solving the
Kohn—Sham equations is the full-potential linearized
augmented plane wave (FP-LAPW) method (see e.g.,
[8]). There are several programs employing this method
such as FLAPW (Freeman’s group), FLEUR (Bliigel’s
group), D. Singh’s code and others. Here we focus on
the WIEN code that has been developed in our group
during the last two decades and is used worldwide by
more than 500 groups coming from universities and
industrial laboratories. The original version (WIEN)
was the first LAPW code that was published [9] and thus
was made available for other users.

3.1. The LAPW method

In the LAPW method [8] the unit cell is partitioned
into (non-overlapping) atomic spheres centered on the
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atomic sites (I) and an interstitial region (II). For the
construction of basis functions—and only for that—
the muffin tin approximation (MTA) is used according
to which the potential is assumed to be spherically
symmetric within the atomic spheres but constant
outside. Atomic-like functions are used in region I but
plane waves (PW) in region II. Each PW is augmented
by a corresponding atomic solution inside every atomic
sphere.

Three schemes of augmentation (APW, LAPW,
APW +1o) have been suggested over the years and
illustrate the progress in this development of APW-type
calculations that was discussed in a recent paper [10].
Here only a brief summary will be given. The energy
dependence of the atomic radial functions u,(r, E) can
be treated in different ways. In Slater’s APW [11] this
was done by choosing a fixed energy E, which leads to a
non-linear eigenvalue problem, since the basis functions
become energy dependent. In LAPW, suggested by
Andersen [12], a linearization of this energy dependence
is used by solving the radial Schrédinger equation for
a fixed linearization energy E, but adding an energy
derivative of this function to increase the variational
flexibility. Inside sphere o the atomic function is given by
a sum of partial waves (radial functions times spherical
harmonics), where L labels the quantum numbers (£, m).

Dl () + b () YL, 3)
L

The corresponding two coefficients ¢ and b (weight for
function and derivative) can be chosen such as to match
each plane wave (characterized by K) to the atomic
solution in value and slope at the sphere boundary (for
details see e.g., [8,10]). In the APW plus local orbitals
(APW +1o) method by Sjostedt et al. [13] the matching
is again (as in APW) only done in value.

The crystalline wave functions (of Bloch type) are
expanded in these APWs leading (in the latter two cases
of LAPW or APW+lo) to a general eigenvalue
problem. The size of the matrix is mainly given by the
number of plane waves (PWs) but is increased slightly
by the additional local orbitals that are used. As a rule
one needs about 50-100 PWs for every atom in the unit
cell in order to achieve good convergence.

APW +1o leads—on the one hand—to a significant
speedup (by an order of magnitude) and—on the other
hand—to a comparable high accuracy with respect to
LAPW [14]. The historical development and the details
of this latest development, which is the basis for the new
WIEN2k program [15], is given in Refs. [10,14]. The new
version combines the best features of all APW-based
methods. It was known that LAPW converges some-
what slower than APW due to the constraint of having
differential basis functions and thus it was advantageous
to go back to APW. However, the energy-independent
basis introduced in LAPW is crucial, since it avoids the

non-linear eigenvalue problem of APW, and thus is
kept. The local orbitals provide the necessary variational
flexibility that make the new scheme efficient [10,13,14].

3.2. The muffin tin approximation and the full potential

The MTA was frequently used in the 1970s and works
reasonably well in highly coordinated (closed packed)
systems. However, for covalently bonded solids, open or
layered structures, MTA is a poor approximation and
leads to serious discrepancies with experiment. In all
these cases a full-potential treatment is essential. In the
full-potential schemes both, the potential and charge
density, are expanded into lattice harmonics inside each
atomic sphere:

Z Vim(r) Yim(r) 4)
M

and as a Fourier series in the interstitial region:
Z VKein. (5)
K

Thus, their form (shown for the potential in Eqgs. (4) and
(5)) is completely general so that such a scheme is
termed full-potential calculation. The foundation was
laid by the pioneering work of the Freeman group
leading to the FLAPW [16,17]. In order to have the
smallest number of LM values in the lattice harmonics
expansion (Eq. (4)) a local coordinate system for each
atomic sphere is defined according to the point group
symmetry of the corresponding atom. A rotation matrix
relates the local to the global coordinate system of the
unit cell. In addition to reducing the number of LM
terms in Eq.(4) the local coordinate system also
provides orbitals that are properly oriented with respect
to the ligands, which may help the interpretation.

The choice of sphere radii is not very critical in full-
potential calculations in contrast to MTA, in which one
would, e.g., obtain different radii as optimum choice
depending on whether one looks at the potential
(maximum between two adjacent atoms) or the charge
density (minimum between two adjacent atoms). There-
fore in MTA one must make a compromise between
these two criteria which are both reasonable. In full-
potential calculations one can efficiently handle this
problem and is rather insensitive to the choice of atomic
sphere radii.

3.3. Computational considerations

In the newest version WIEN2k [15] the alternative
basis set (APW +10) is used inside the atomic spheres
for the chemically important orbitals, wherecas LAPW
is used for the others [10,14]. In addition new algorithms
for the computer intensive general eigensolver
were implemented. The combination of algorithmic
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developments and increased computer power has led to
a significant improvement in the possibilities of simulat-
ing relatively large systems on moderate computer
hardware. Now, PCs or a cluster of PCs can be used
efficiently instead of the powerful workstations or
supercomputers that were needed about a decade ago.
Several considerations are essential for a modern
computer code and were made in the development of
the new WIEN2k package [15]:

Accuracy: extremely important in the present case. It
is achieved by the well-balanced basis set, which
contains numerical radial functions that are recalculated
in each iteration cycle. Thus these functions adapt to
effects due to charge transfer or hybridization, are
accurate near the nucleus (important for EFG) and
satisfy the cusp condition. The PW convergence can be
essentially controlled by one parameter, namely the
cutoff energy corresponding to the highest PW compo-
nent. There is no dependence on selecting atomic
orbitals or pseudo-potentials. It is a full-potential and
all electron method. Relativistic effects (including spin
orbit coupling) can be treated with a quality comparable
to solving Dirac’s equation. All atoms in the periodic
table can be handled.

Efficiency and good performance: should be as high
as possible. The new mixed basis APW +1o/LAPW
optimally satisfies this criterion. The smaller matrix size
helps to save computer time and thus larger systems can
be studied. The scaling is less than N3.

Parallelization: the program can run in parallel, either
in a coarse grain version where each k-point is computed
on a single processor, or—if the memory requirement
is larger than that available on a single CPU—in a fine
grain scheme that requires special attention for the
eigensolver, the most time consuming part. Both
options, full and iterative diagonalization, are imple-
mented to (automatically) select the most efficient
routines.

Architecture: the hardware in terms of processor
speed, memory access and communication is crucial.
Depending on the given architecture, optimized algo-
rithms and libraries are used during installation of the
program package.

Portability: requires the use of standards as far as
possible, such as FORTRAN90, MPI, BLAS (level 3),
SCALAPACK, etc.

User friendliness: is achieved by a web based graphical
user interface (GUI), called w2web. The program
package provides an automatic choice of default options
and is complemented by an extensive User’s Guide. As
one example for the GUI the structure generator is
illustrated in Fig. 1 and is discussed in the case of
titanium carbide (TiC).

It should be mentioned that TiC is a refractory metal
compound that crystallizes in the rock-salt structure and
has the unusual combination of properties, namely a

Session: TiC User: phlaha
/Jsusijpblaha/lapw)/ TiC

StructEdit fsusifpblahallapwiTiC

=

Struct Genm
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Fig. 1. The graphical user interface w2web in WIEN2k: Structure
generator for titanium carbide.

melting point of about 3100°C, metallic conductivity
and the hardness of diamond. It is used, e.g., for cutting
tools in the steel industry. Fig. 1 illustrates how a
calculation for a crystal structure is set up. One chooses
a title for the compound, selects the treatment of core
electrons (relativistic), defines the lattice type (face
centered cubic) and lattice parameters (a,b,c, o, f3,7).
In a cubic system as in TiC there is only one independent
lattice constant and all angles are 90°. Then the atoms,
Ti and C, need to be specified, with the atomic number
Z, the muffin tin radius (RMT) of the sphere and the
corresponding position in the unit cell.

This illustrates the first principle nature of such
calculations. If the lattice constant is not known from
the experiment, it can be optimized by minimizing the
energy. In more complicated cases one can also use the
space group symmetry and enter only the position of
one of the symmetry-related atoms, where others are
generated automatically.

3.4. Alternative DFT methods

Other schemes of comparable quality to solve the
KS equation are available too, e.g., modern



324 K. Schwarz | Journal of Solid State Chemistry 176 (2003) 319-328

pseudo-potentials or other full-potential methods. There
are also simplified versions of electronic structure
calculations such as the linear muffin tin orbital
(LMTO) or augmented spherical wave (ASW) method,
in which often the atomic sphere approximation (ASA)
is made, where within the self-consistency cycle a
spherically averaged potential and charge density is
assumed around each atomic site. Although these
schemes (with the ASA) are computationally faster,
they often do not provide high enough accuracy to study
details of the electronic structure, especially for mechan-
ical properties. Note that full-potential LMTO and
ASW exist as well.

4. Applications of WIEN2k
4.1. Systems

The problems considered so far in QM calculations
using the LAPW method (employed in various versions
of the WIEN code) have covered a wide spectrum,
including in particular insulators, semiconductors,
(transition) metals up to f-electron systems or inter-
metallic compounds. The band structure can directly be
compared to experiment in weakly correlated cases.
However, the electronic structure of highly correlated
systems such as the high Tc superconductors or the
often-discussed late transition metal oxides would
require treatments beyond LDA or GGA. In some
solids magnetism plays an important role and as long
as the magnetic moments are ordered in a collinear
arrangement (e.g., ferro-, ferri- or antiferromagnets) a
proper description is relatively easy. Recently an
extension to non-collinear magnetic systems (e.g.,
canted spins or spin spirals) has been provided. Below
several examples, which illustrates a variety of problems
that can be studied are briefly sketched.

4.2. Results of band structure calculations using LAPW
and the WIEN code

The results of LAPW calculations provide the basis
for the interpretation of chemical bonding and the
comparison with several experimental data. It should be
mentioned again that there are other LAPW implemen-
tations besides the WIEN code but the latter is probably
the most widely used LAPW code (with more than 500
groups worldwide). Many research results were obtained
by means of WIEN calculations, most of which can be
found on the web (www.wien2k.at). Although this list
of references is not complete, it contains only about
200 references from the last 3 years. In order to select
representative references, we first summarize some
properties (Sections 4.2.1-4.2.8) but restrict the exam-
ples to work made in our group. The second part (see

Section 4.2.9) is devoted to exciting research topics
based on WIEN calculations that were done by other
groups. Most of the corresponding references can be
found on the web and the related topics are sketched at
the end of this section (see Section 4.2.9) showing the
broad variety of possible applications.

4.2.1. Band structure and density of states (DOS)

The energy band structure and the corresponding
density of states are the dominant quantities that
determine the electronic structure of a system. Their
inspection provides information about the electric
property (metal, insulator or semiconductor) and gives
insight into the chemical bonding. By looking at site-
decomposed partial densities of states one can find a
hint for the strength of interactions between the orbitals
of the constituting atoms. As one example the bonding
in the mineral andalusite, Al,SiOs, was discussed using
these DOS [18].

The band structure is useful e.g., in connection with
photoelectron spectra. A three-dimensional band map-
ping is possible by angle-dependent very-low-energy
diffraction and photoemission. A representative exam-
ple is given for Cu [19], for which the calculated band
structure agrees very well with the experimental data.

4.2.2. Electron densities

The electron density is the key quantity in DFT. By
taking its Fourier transform the static structure factors
can easily be obtained, which can be compared with the
X-ray diffraction measurements. The comparison, how-
ever, is delicate, since the experiments are taken at finite
temperature and must be corrected for thermal smear-
ing, absorption and extinction. Determining the static
structure factors from the experimental data requires a
model in order to allow a comparison with theory.
Therefore a Multipole Refinement Project [20] has been
proposed by the International Union of Crystallography
(IUCr) with the focus on corundum, Al,O3, for which
a detailed analysis from experimental data, via a model
to theory is given. Another example is stishovite, SiO»,
which recently was investigated using high-energy
synchrotron radiation [21]. The earlier work on silicon,
for which almost perfect crystals are available, should be
mentioned in this context [22]. In this case the accuracy
of the experimental data was so high that the quality of
different exchange correlation potentials could be
evaluated.

In most cases the total electron density has maxima
only at nuclear positions, but there are examples of non-
nuclear maxima (NNM) in metals [23] or sodium electro
sodalite (SES) [24]. In SES a NNM appears in the center
of the cage at the color center (see Section 4.2.5 and
Fig. 2). A controversial issue was the chemical bonding
in cuprite, Cu,O, that was revisited recently [25]. In this
case limitations of DFT and schemes beyond LDA are


&ast;http://www.wien2k.at

K. Schwarz | Journal of Solid State Chemistry 176 (2003) 319-328 325

Fig. 2. Structure of sodium electro sodalite (SES) Nag(AlSiO4)s. The
cage consists of alternating SiO4 and AlO4 corner-shared tetrahedra.
Inside each cage the charge is compensated by 4 Na™* ions and an
electron e~ (color center) at the center of the cage, where no nucleus is
positioned. For details see Ref. [24].

discussed in order to derive a picture that is consistent
with experimental observations.

In the discussion of chemical bonding various
schemes which rely on the electron density are used.
These are for example partial charges, which always
depend on the underlying model. In our case partial
charges can easily be computed by taking the fractions
that reside inside the atomic spheres but these values
obviously depend on the sphere radii chosen. Inside each
sphere a partitioning into /-like charges (s,p,d,f) can
be done according to our atomic basis functions. These
charges can be further decomposed with respect to the
corresponding point group symmetry of each atomic site
according to the m-components (e.g., px,py,p-) or their
symmetry adapted combinations. This latter decompo-
sition corresponds to the local coordinate system, which
may coincide with the symmetry axes of coordination
polyhedra. In such a case the interpretation of bonding
is helped by having a proper orbital basis.

An alternative scheme [26] is based on a topological
analysis following Bader’s quantum theory of atoms in
molecules (AIM). Space partitioning into atomic basins
is uniquely defined, where an atomic basin is limited by
a surface that is not crossed by gradient vectors, i.e., the
‘zero flux’ criterion holds for each surface point

Vop(r).n(r) =0, (6)

where n(r) is the surface normal vector [26]. Further
analysis looks at the bond critical points (b.c.p.), at
which the gradient of the density vanishes, and so too
are the density at these points and the Laplacian. Such
an analysis was made for example for stishovite [21],
and the topological analysis compared theory and
experiment.

Difference electron densities taken between the
crystalline density and an artificial reference state
(defined by a superposition of atomic densities) enhance
the changes that occur in the formation of a solid with
respect to neutral atoms. Such a characterization of
chemical bonding is illustrated for anadulsite [18]. A
similar scheme is used in crystallography but in
reciprocal space.

In the case of magnetic systems, spin densities are
available. In collinear systems, the difference between
spin-up and spin-down densities and the magnetization
density, shows where the related spin magnetic moment
resides, although the electrons are delocalized, e.g., in
itinerant magnets.

4.2.3. Electric field gradients (EFG)

Nuclei with a nuclear quantum number / >% have an
electrical quadrupole moment Q. The nuclear quadru-
pole interaction (NQI) can aid in determining the
distribution of the electronic charge surrounding such
a nuclear site, which is characterized by the EFG tensor.
This interaction can be measured by nuclear magnetic
resonance (NMR), nuclear quadrupole resonance
(NQR), Méssbauer or by perturbed angular correlation
(PAC) measurements and is determined by the product

vreQ®d/h, (7)
where @ is a traceless tensor characterizing the EFG

o o>V (0)
v axi an

1
- g%‘VZV (8)

which is the second derivative of the electrostatic
potential with respect to two coordinates.

The EFG is sensitive to the anisotropy of the charge
density distribution close to the nucleus. In 1985 we
have shown for Li;N that the EFG can be calculated
from first principles [27], since the EFG is uniquely
defined by the charge distribution and thus the electron
density. Since this first application to LisN the EFGs
of many compounds have been studied e.g., the high-
temperature superconductor YBa,Cu;05 [28], for which
the origin of the EFG was interpreted for all oxygen
positions. In this work it was shown that the anisotropy
in the charge density around the oxygen atoms
(characterized by the difference in the p.,p, and p.
occupation numbers inside the oxygen spheres) is
directly proportional to the corresponding EFG. At
this point it should also be mentioned that the EFG at
one of the copper positions (Cu(2) in the Cu-O layer
that leads to superconductivity) deviates by more than a
factor of two from experiments. This indicates that the
present versions of DFT are not yet suited to treat such
highly correlated systems in all details, whereas certain
aspects (like the EFGs around oxygen) are properly
described.
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Other systems (from minerals, sodium-nitroprusside
to rare-carth borocarbides) have been studied as well
[18,29,30]. One noteworthy was the calculation of EFGs
for a series of iron compounds in relation to the
experimental NQI data, that made it possible to even
determine a new value for the nuclear quadrupole
moment Q of >’Fe, the most important Mdssbauer
isotope that was twice as big as the old value in Ref. [31].

4.2.4. Total energy and phase transitions

With the total energy the relative stability of different
phases can be computed. In such a case it is advisable to
keep as many parameters constant as possible in order
to have a cancellation of systematic errors. These
parameters can be, for example, the size of the atomic
spheres, the plane-wave cutoff, the k-mesh, the DFT
functional, the treatment of relativity, etc. Energy
differences are often rather small and thus a consistent
treatment of the systems to be compared will help to
minimize these computational effects. A few examples
can be found in applications to metals [32], an insulator
CaCl, [33] or a defect structure [34]. In each of these
cases a new interpretation for the interplay between the
structure of a solid and the electronic structure is given.

4.2.5. Forces and structure optimization

Closely related to the total energy is the structure
optimization that is often needed in this context. In
cases where the atoms occupy general positions that are
not fixed by the crystal symmetry, the knowledge of
the forces acting on the atoms helps to optimize the
structure parameters. Forces can be computed in
WIEN2k and are crucial for such optimizations.

An example that was used to test the new APW +1lo
scheme is discussed below. The structure is sodium
electro sodalite (SES), a rather unusual system that
contains 44 atoms per unit cell (Fig. 2). The main
building block is an ordered aluminum silicate, in which
corner-shared units form the cage with alternating SiOy4
and AlO, tetrahedra. Aluminum has one charge less
than silicon and thus the three charges missing per cage
can be compensated for example by sodium ions. Three
Na™ ions are needed for charge neutrality but (accord-
ing to cubic symmetry) a fourth ion can enter the cage
and thus one electron is too much and forms a color
center placed at the center of the cage. Note that there is
no nucleus at this position. There is an antiferromag-
netic coupling between these color centers in neighbor-
ing cages. The properties of SES are discussed in Ref.
[24] and the use of forces is analyzed in Ref. [14], where
it is shown that about half the matrix size is needed in
APW +lo to obtain an accuracy comparable to LAPW
reducing the computational effort by about an order of
magnitude (due to the N3 scaling). This example
illustrates the complexity of a system that nowadays
can efficiently be treated already on a PC. Increased

computer power will let us study larger systems
containing up to a few hundred atoms per unit cell.

4.2.6. Materials with unusual properties

The magnetic interactions in a spinel (LiV,O4) has
recently attracted much attention due to the presence of
a heavy fermion behavior in a 3d metallic system [35].
The electronic structure of a mixed valence system has
been studied as well [36]. The pyrochlore metal
Cd,0s,0 has unusual properties [37] which require a
proper treatment of spin—orbit coupling of the transition
element that dominates the energy bands near the Fermi
energy. Metastable states e.g., of Na,[Fe(CN)sNOJ-
2H,0 can be used for an optical storage medium using
holography [38]. In this case the NO group can form
linkage isomers, which are metastable states, between
which one can switch with proper laser light.

4.2.7. Spectra

The photoelectron spectra have been mentioned (see
Section 4.2.1) in connection with the energy bands [19].
Some spectra can be interpreted using EFG results as
discussed above (see Section 4.2.3). X-ray emission and
absorption spectra can be calculated using the partial
densities of states and the transition probabilities
between a valence and a core state. Such spectra provide
useful information on the local binding situation of the
atom, whose core state is involved. Sometimes the core-
hole screening should be taken into account, at least
approximately [39]. Optical spectra and related quan-
tities are available too.

4.2.8. Other properties and extensions of the program

Many applications in connection with magnetism
have been done, and they fall beyond what can be
presented in a short presentation like here. Sometime
the present versions of DFT, LDA or GGA are not
sufficient to treat a given solid, for example a highly
correlated system as the high temperature superconduc-
tor mentioned above [28]. There are several attempts to
go beyond LDA, for example, by including a Hartree—
Fock-like treatment of the electron repulsion between
electrons, as defined by a Hubbard U. Such schemes can
be and have been implemented and are applied, e.g., to
FeAl [40], where correlation effects induce a paramag-
netic ground state that can be obtained using LDA + U,
whereas GGA leads to a ferromagnet in contrast to
experiment.

4.2.9. Variety of applications with LAPW
or the WIEN code

At the beginning of Section 4.2 it was mentioned that
many research problems were studied through WIEN
calculations and most of these references can be found
on the web (www.wien2k.at), although this list is by no
means complete. Above, several examples (mainly work
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from my group) were mentioned to demonstrate some
possibilities to use LAPW results. In order to illustrate
the broad range of applicability and how the WIEN
results can be used, several topics are summarized below
but without details that can be found in the original
literature.

For a large variety of structures the following topics
were investigated, such as chemical bonding, structural
stability, high-pressure phases, Jahn—Teller distortions,
charge disproportionation, phase transitions, ferroelas-
tic, ferroelectric or elastic properties. Intrinsic semicon-
ductors were studied looking at band gaps, effective
(electron or hole) masses, alloying or heavy doping.
Magnetic solids (including intermetallic compounds)
were investigated and the investigation concerned the
role of spin and orbital magnetic moments, magnetic
ordering (ferro-, ferri-, antiferro-magnetic) or meta-
magnetism. Such research work included magnetic
circular dichroism, the Farady effect or spin-density
waves. LAPW calculations can help to understand
various spectroscopies (optical, core-level, photoelec-
tron, Mossbauer, NMR) and can provide information
on hyperfine or crystal fields, the magneto-optical Kerr
effect or electric field gradients. Other interesting topics
are surfaces, multilayers, superlattices, or intercalation
compounds. Here the work at the Fritz Haber Institute
(Scheffler’s group) should be mentioned as a represen-
tative case. In this group WIEN based calculations were
much used to investigate the interaction of molecules
with a solid surface. A recent paper [42] is a nice
example of how DFT results (at 7 =0 and ambient
pressure) can be extended to realistic conditions that are
used in catalysis by using additional thermodynamic
models. Many related references can be found at the
corresponding web page (www.thi-berlin.mpg.de/th/
th.html).

5. Summary and Conclusion

DFT calculations—for example by the LAPW meth-
od and the WIEN code—can provide useful information
concerning the electronic structure of ordered crystal
structures. The results depend on the exchange and
correlation potential that is chosen for the calculations.
In comparison with real systems it should be stressed
that all kinds of imperfections are ignored. Some of
them can be simulated. For example, it is possible to
represent defects, e.g., an impurity, by studying (in a
simple case) a 2 x 2 x 2 super-cell, doubling the original
unit cell in all the three dimensions. Sometimes a large
super-cell may be needed to simulate the physical
situation. When one atom in this large unit cell is
replaced by an impurity atom, the neighboring atoms
can relax to new equilibrium positions. Such a super-cell
is repeated periodically and approximately represents

an isolated impurity. Super-cells can also be used to
simulate surfaces and their interaction with atoms or
molecules. These examples illustrate how theory can
carry out computer experiments. Hypothetical or
artificial structures can be considered and their proper-
ties can be calculated, irrespective of whether they can
be made or not. Such calculations can predict the
property of a system (e.g., insulator or metal) or find its
magnetic structure. In addition to the properties that
were discussed here, other data concerning the electro-
nic, optic or magnetic properties are available. Simula-
tions can be carried out to predict how the system may
change with deformations, under pressure or substitu-
tions. Pressure is an easy parameter for DFT calcula-
tions in contrast to experiments. The opposite is true
for estimating temperature effects which are easier in
experiments rather than in theory. Finite temperature
effects can be included using lattice vibrations, which
may be obtained from calculations (e.g., using frozen
phonons or by direct methods displacing atoms) or
approximated from known phonon data. Recently the
latter procedure was illustrated for titanium under high
pressure [4]. DFT results may provide crucial para-
meters for other models which are needed to study
effects on larger length scales. The examples given here
are just a small selection to illustrate some possibilities
the WIEN2k code can provide. Additional references
can be found on the web (www.wien2k.at) referring to
the papers of the many WIEN users.
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